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[. Introduction

I.1. The Buzz Words

MINOS stands for "a Modular In-core Nonlinear Optimization

It sounds roughly like the first character in "-=" (minus

System.'
infinity), and its purpose is to optimize your own special objective
function f(x) by finding a point x which makes f(x) as close
to I as possible.

Since it is not normally meeningful to go quite that far,

MINOS allows you to restrict the variavles x to some feasible

regcion specified by a set of linear constraints (Ax 3 b) and a
set of upper and lower bounds (£ < x € u). I[n particular, the matrix

A may be large and gparse. Of course A may be small and sparse, or

even small and dense; in general, the smaller and sparser the better.
ldeally your objective function f(x) should be smooth, the

nonlinear part of it should involve as few of the components of x

as possible, and you should know how to compute the gradient vector
glx) = (6f/6x1) at any feasible point x.

With the important words thus introduced, we will now leave
an example problem to speak Cor itcelf. The remainder of this section

contains the following:

--a statement of the problem;
--a Fortran subroutine to compute f(x) and g(x);

--input cards to be read by MINOS;

--the output produced during solution of the problem.




The reader should not expect to understand all items immediately.
However, the example should help to determine if a particular problem
iz of the requisite form, and may serve as a useful reference there-

after. Note that "x" in this example is the vector (x, ¥, 2).

Example 1

Objective: minimize f(x, y, 2) = % (y - l)l+ - bx + 2
Linear Constraints: % by L8

s e = (0]
Bounds: x 2 0, s 2i< S

Nonlinear Variables: x and y

Fortran Subroutine to Compute the Nonlinear Part of f(x, vy, z)

and its Gradient

SUBROUTIMNE CHLUFGT PHIDE «H o o slawi 5 Te TE JHIFRDOE o
IMPLICIT FEAL#®ECH-H 1=
DIMEMSTON  mvs giant

I
[ EVALUATE FUMCTION  F o AHD GEADIENT & AT CURRENT FOIMT
i THE INTEGER H WILL BE 2 [#H THIS EXBMPLE.
-

! = w23 = 1.0

3 = AEEZ + THsY

GC1) = Z.u#Rot?

Fnay = YUk T3

FETURH

EHD

(The parameters of subroutine CAICFG are defined in Section III.3.)

no
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Output from MINOS
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I.2. Formal Introduction

MINOS is a computer program designed to minimize a linear or

- . : ; - ; t s
nonlinear function subject to linear constraints. n algebralc

terms it is designed to solve problems of the form
el A7 it
minimize f{x) + ¢ x
P:
subject to Ax = b, L s ]

given that f(x) is a continuous differeaciable function

with gradient Vf(x) = [af/ale = g(x).

Such problems range from small, unconstrained optimization problems
through constrained linear least squares (data-fitting) models to
large-scale linear programs with (or without) nonlinear terms in
the objective. In general the constraint matrix A is assumeﬁ to
be large and sparse.

Fundamental to the system is an efficient and reliable imple-
mentation of the revised simplex method for linear programming (LP).t
This combines established sparse-matrix technology with stable numeri-
cal methods for computing and modifying a triangular factorization
of the usual square basis matrix BF The code is intended to be suit-
able for production runs on purely linear problems. The data formats

used for various files therefore follow those adopted by current

commerc ial mathematical programming systems. In particular, the )
|

*
The theory of the solution technique is described in a companion )
paper, Murtagh and Saunders (1976). )

*Dantzig (1963).

R

‘Bartels and Golub (1969), Bartels (1971), Saunders (1976).
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quantities A, b, ¢, £ and u are defined in the format accepted
by the IBM Mathematical Propramming Systems MPS/300, MPSX and
MPSX/570. Ideally the reader of this manual should have experience
in using such systems and should (a4 fortiori) he familiar with the

roneepts and terminology associated with the simplex method.

Recall that the basic variables associated with B may take

1

solution values anywhere beiween their upper and lower bounds, and

J
that the remaining variables sre defined to be nonbasic at one oz
other of their bounds. The simplex method slways works with solutions
of this form. 1In order to extend the simplex method to problem P we
introduce a new class of variables, which will be called superbasic.
Both hasic and superbasic variables may vary between their bounds,

but in the reduced-rr'ad1’,er‘n‘,Jr approach used here their roles are
different. Suppose there are ns superbasic variables at some stage.
These are essentially free to move in any desirable direction, namely
one which will improve the value of the objective functions; in

effect they provide the driving force. The basic variables can

tnen be adjusted so that the full set of variables x remains feasible
with respect to the linear constraints. If it appears that no improve-
ment can be made with the current set of superbazics, one (or more)
of the nonbasic variables is selected to become superbasic, ns is
increased and the process is repeated. At all stages, if a basic
or superbasic variable encounters one of its bounds, an adjustment
occurs in which that variable is made nonbasic and the total number

of superbagics is reduced by 1.

TWolre (1962, 1967).




Users familiar with IP may interpret the acimplex method as
being exactly the above process, with ns oscillating between O
! i ) 4

and 1.

At any given stage, the number of supzrbasics (ns) measures
in some sense how far the current point x 1is from a vertex of the
simplex (polyhedron) defining the feasible region. In other words,
x lies somewhere on a face of the polyhedron, which defines a sub-
cpace of dimension ns. An important part of MINOS is a stable
implementation of a guasi-Newton (or variable-metrie) method for
optimizing the superbasic variables within each appropriate subspace.
This method uses a triangular matrix of dimension ns to approximate

the reduced Hessian (i.e., a suitably transformed sub-section of the

matrix of second derivatives, [bzf/bxi&xj]). Good rates of conver-
gence are usually achieved.

If the number of superbasic variables ever grows as large
as 100 or 200 the storage required for the quasi-Newton procedure
starts to become excessive. In such cases MINOS will commence using
a conj e-gradient method,* which requires very little storage.
The rate of convergence normally drops severely, but at present this

is the only practical alternative for problems with very many

nonlinearities.

The concept of superbasic variables can be valuable even for
purely linear problems. As an example, the solution to a particular
problem may provide a feasible but non-vertex starting point for a
modified version of the problem (e.g., if the bounds were altered on

some nonbasic variables). The re~gtarting features in MINOS allow

Y bavidon (1959), Fletcher and Powell (1963).
*Fletcher and Reeves (1964) .

10
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the user to take advantage of such situations easily. On a less

routine level, MINOS also provides a tramework within which experi-

ments can be performed on large problems using non-simplex steps,

perhaps with a view to reducing the total number of iterations required.

[.3. The Canonical

Form

Without loss of generality, problem P may be re-cast in

the f'orm
minimize
B:

subject to

given

where the following

f(xN) 15 Sohj

r F

x, | it

i i

Y = ( <

[AN AI‘w T Q, L < < u

r o

-;3 ] -S )

Vf(XN) = G(XN>

definitions hold:

the nonlinear variableg, i.e., those that are directly involved

in the function f(xN).

Xy = the linear

ariableg, i.e., the remaining part of x.

P = the right-hand side variable, which has bounds Kp all = «li0

(@)

Ll



the glack or logical variables (one for each row of A).

R the slack variable corresponding to the linear part (if any)
ob,j

of the objective function. The term ¢“x in problem P

is thus imbedded in the constraint matrix as the "obj"-th
: T : e 5 2
constraint, ¢ x + 8 _, . O, with s _,. being a free variable.
ob,j 3 ob,j :
(This row may be omitted iff ¢ O orif ¢ 1is Included in f£.)
A R
i
m = the number of rows in A.
n = the number of columns in A.
nn - the number of nonlinear variables in xr.
1
ns = the number of superbasic variables. "

At any particular stage, the columns of [A b I] are implicitly

ordered as follows:

m ns n+1-ns
[AbIlP= B S N
Basica, as in Nonbasics

simplex method Superbasics (variables at upper
or lower bound)

where P 1Is a permutation. The nonlinear variables may end up
anywhere in B, S or N, and similarly the superbasic variables in
S may be linear or nonlinear. The only requirement is that the basis

matrix B be nonsingular.

12
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[ The above partitioning should be remembered when interpreting

output from MINOS and when modifying certain basis files for input.
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II. Nonlinear Problems

At any piven stage, the reduced-gradient method regards the
objective as an essentially unconstrained function of the super-
basic variables alone. (Basic and nonbasic variables are eliminated
by means of the active constraints.) It is therefore possible to
use unconstrained optimization methods on some "reduced function"
of the ns superbasic variables. Suppose that the original
objective has gradient g and Hessian G (i.e., the matrix of
second partial derivatives). The gradient and Hessian for the

reduced function are then ZTg and ZFGZ, where Z 1is defined in

terms of the current basis as the n X ns matrix

{ -B"lS m
Z = I ns *
0 n+l-m<ns
i, J
ns

Note that it would not be practical to compute 2 or ZTGZ

(assuming m to be large and ns to be more than 1 or 2).
Any unconstrained optimization method to be used must therefore

make do with vectors of the form ZTg or “p, which can be computed

with relative ease.

14
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TE.d The Quasi-Newton Method
-
! Whenever storage permits, as specified by a HFSSTAN DIMENSION
" cord in the SPECS file (see Section [V), MINOS maintains a quasi-
, -
¢ Newton approximation to the reduced Hesglan thus:
’

-

e T
RRw Z4°GZ

where R 1is a dense, nonsingular, upper triangular matrix of
dimension ns. This normally provides superlinear convergence to
a minimum within the subspace defined by each set of superbasic
: . ; i T S

variables. The factorized form R R 1is justified by the fact

ok S et : olc 5
that Z GZ must be positive definite (or at least semi-definite)
at such a minimum. It also guaraniees that the equations

RIIRS = -ZIV, P = Zs

will generate a direction p along which the original objective

will decrease (since the projection of p along the gradient is

% T, T
sZg

s R'Rs = -lIRsll < 0).

g =

i Various modifications are made to R each iteration to

ﬁ account for new curvature information and to allow for changes in
&

P

£ the number of superbasics. For example, when a nonzero step is
.;:?

§ taken, a new matrix R is computed in two stages to satisfy

BE - HTR P wa

Gl G G S D AU D D D G Sy emay ey ey




for some vectors v and w (which are determined by the so-called
"Complementary DFP" or "BFGS" formula, e.g., see Broyden (19772)).
The result of such operations on R 1s briefly indicated in the
iteration lor by two integers labelled "RIM" (short for Rank-one

Modifications). In general, these numbers are:

positive if the modifications were successful;
Zero {f the change in reduced gradient was too small for v
and w to be meaningful (in which case R is unaltered);

negative 1if numerical error prevented a particular modification.

Another useful quantity appearing in the iteration log is
an estimate of the "condition number" of RTR. See the discussion

of H-CONDN in Section VII ; also see Section II.3.

II.2. Conjugate-Gradient Method

If insufficient storage has been allocated for R, MINOS
will discontinue the quasi-Newton method for generating search direc-
tions and switch to a conjugate-gradient method (which does not need
R). The dimengion of R may be specified separately from the upper

limit on superbasics, thus:

SUPERBASICS 200

HESSTIAN DIMENSION 100

16
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In this example a conjugate-gradient method will he used if the
number of superbasics exceeds 100. Guasi-Newton iierations can be
suppressed completely by the card
HESSTAN DIMENSTON 0
(The total no. of iterations will probably increase significantly.)
Five versions of "CG" are currently availeble via the SPECS
card

CONJUGAT® GRADIENT VERSION k

for the following values of k:

k Method
1 Fletcher and Reeves (196k)
2 Polak and Ribiere (1969)

2 Perry (1976)
L Memoryless DFP

5 Memoryless Complementary DFP

The general form of the first three methods is

B T
8- g ¥ Bsold

P ¥ |




where s and s_ are the new and previous search directions

old
for the superbasics, and f depends on the method. The other
two methods are derived from the corresponding quasi-Newton formulas,

taking the initial reduced Hessian approximation to be 1I. They

add to 8 a term of the form

Restarts (B = y = 0) occur at every change to the basic or super-
basic sets, or after ns consecutive unconstrained steps with a
particular set of ns superbasics.

The state of research on conjugate-gradient methods is such
that no clear recommendation can be maede for the choice of k. If
an accurate linesearch is used, all methods are rather similar and
k =1 or 2 should be tried. If the objective function is so
expensive to evaluate that an inaccurate search is necessary,

k =3 or 5 may be preferable. Method 4 appears from limited
experience to be the least successful. Considerable further research

is needed in this area.

IT.3. Scaling Nonlinear Variableg

No rigid rules can be given here that would apply usefully
to all nonlinear functions, but one quantity in particular may be
worth examining if it seems that optimization is proceeding very

slowly. This quantity is cond(G), the condition number of the
Hegsian, which may be very sensitive to scaling.

18
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We shall illustrate with a particular function of two

variables, viz.

where b and c¢ are known parameters. 1t is readily verified

that the Hessian for f is

2 ’ ~ 7~ -
3‘{'/’5}(2 (,12?/;))((‘:“/ . b(b - 1)y2 bexy
G(x, ¥) = o
Ui g 2 L’xc 5
éef/uxdy DLf/dyd L3 bexy cle - 1)xd
Furthermore, G may be factorized as
G(x, 3) = *;ﬁg 11t
X'y
where
By
L =
X ox
B° = b(b - 1)
y =be/p

8T = c(l « b < e)/(b =~ 1)




S—

A triangular factorization of this kind provides a lower bound on

the condition number of G, in te of the ratio of the largest

and smallest diagonals of L. 1In this case, suppose that

l By = l?xl at the optimal solution. Then

cond (G) - umd(mﬂ,>(éx) .

Assuming that B and ® are reasonable numbers (of order 1), it
appears that the ratio yz/x2 at the optimal solution may be a
useful indicator of the sensitivity of the optimum to small changes
in the data. To make the estimate of cond(G) close to 1, x and
y should be scaled to have approximately the same values at the
solution. (The same conclusion would be drawn if |[By] < f&xl.)
Warning: In the reduced-gradient method, scaling for the

above reasons should not be at the expense of upsetting the scale

of the constraint matrix, A. This is because the quantity of

N3

interest is really cond(ZTGZ) rather than cond(G), where is
a matrix whose scale (and condition) depend on A.
Note that if certain variables (and hence columns of A)
are scaled to improve cond(C), it may be necessary to scale certain
rows of A to maintain the condition of A and ZTGZ. 1t may
then be necessary to scale certain gther columns of A, and so on.

Clearly, it is preferable to be careful with scaling during the

initial formulation of a problem.

20
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= Finally, the analysis suggested above will usually be appli-
cable to certain obvious rows and columns of G, rather than to
G as a whole; for example, if ( is block-diagonal, each block

may be analyzed in turn.

e

£
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[I1I. Data Required from the User

The following three items must be supplied by the user:

1. the SPECS file to specifly certain run-time parameters;
. the MPS file to specify the linear constraints in

gtendard MPS format;
& subroutine CAICFG to compute the nonlinear part of the

bjective function and its gradient.

The user may also (optionally) supply

4. certain BASIS files to define an initial solution.

Since several or all of the various input files could be part of the
card input stream, it is important to note that MINOS reads data in

the following order:

(a) SPECS data
(b) MPS data
(¢) BASIS data

(d) any data required by subroutine CAICFG.

IT11.1. The Z3PECS File

Certain parameters may be set by the user via a list of
"problem specifications," hereafter called SPECS. These are assumed

to be a deck of 80-character card images of the form

——

oy

ot



BEGIN SPECS FOR FRED

(list of keywords and values)

.
.

END FRED

where the words BEGIN and END are themselves keywords. (Other charac-~
ters on BEGIN and END cards are ignored.) The SPECS file must exist;
it is normally the first data set in the card input stream (file 5).
Broadly speeking, each card in the SPECS file contains a
sequence of items punched in free format (i.e., separated by at least

one blank or =). The items selected from each card are

1. The first word (Lhe keyword; only the first 3 characters are

gignificant);

n

The second word (8 characters, treated as two sets of 4);

3. The first number (up to 8 characters; cither integer or real).

In the following examples the significant characters are underlined:

OBJECTIVE PROFIT

ROWS 200

ALJTOL 1,0E-6

IOWER BOUND =10

SOLUTION FILE _ 20

OLD BIT MAP ON FILE 9
25



Only occasionally is the second word m?nninéful (e.g., PROFIT and
FILE above). Woras such as BOUND and BIT MAP are extracted but
later ignored.

Blank cards are allowed, and comments (i.e., any characters)

may occur after an asterisk, e.g.,

NONLINEAR VARIABLES 20 * X005, X010, ..., X100.

Default Values

Parameters that are not specified in the SPECS file assume
certain default values, most of which should be accéptable for normal
use. [n the following 1list the default values are given for all
legal keywords. Where possible (except for some of the items printed
in lower case) the list itself constitutes a valid SPECS file. Note,

however, that its effect would be essentially the same as the file

BEGIN

END

(which is also valid).
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After the SPECS file has been successfully read, the data
specifying the canstraint metrix is input in standard MPS format.
This format is def'lned under the title "CONVERT DATA" in IEM
document, number SH20-0968-1, "Mathematical Programming System-Extended
(MPSX), and Generalized Upper Bounding (GUR)," pp. 199-209.
Alternatively, see IEM document number H20-0476-2, "Mathematical
Programming System/360 Version 2, Linear and Separable Programming --
User's Manual," pp. 141-151.

The various sections of the data must be in the following

order:

NAME
ROWS
COLIMNE
RHS
RANGES
BOUNDS
ENDATA

e on S Data
1. The relevant column numbers and contents for the fields on each

data card are as follows:

Fleld 1| Field 2 | Field * | Field 4 | Field % | Field 6
2<3 5«12 15-22 25236 Lo-L4T 50-61

code name name value name value




6.

The NAME card may define a name f any length, beginning in
column 15. Only the first 8 characters are saved for printing
with the solution.
The ROWS section may define constraints to be of type =, =, <
or free, using the characters E, G, L or N respectively (in
column 2 or column 3). It is not essential to have an objective
row; thus there may be O, 1 or more rows of type N.
The COLUMNS section may define 1 or 2 matrix elements per card.
For nonlinear columns, it is also acceptable to have O elements
(i.e., just the name of the variable).
NOTE: Nonlinear variables must occur first in the COLUMNS section,
ordered in a manner that is consistent with the array X
in the user-written subroutine CALCFG.
The RHS section may contain several RHS's. A specific one may
be requested via the specifications, otherwise the first RHS is
taken.
Similarly for the RANGES section.
Similarly for BOUNDS. The types of bound allowed are UP, 1O, FX,
FR, MI, PL.
Warning: If a variable is essentially unconstrained the bound
type FR (free) should always be used. Never use a
large negative I0 bound. Similarly if a variable XI
has bounds -» < XI < 5 (say), then 2 cards are required
as follows:

FK BND1 XI
UP BND1 XI 5.0

28



8. The INITIAL bounds set. The name INITIAL is reserved to specify

(optionally) a special bounds set which can be used to assign

Initial valuec to nonlinear variables. The INITIAL bounds

set must appear after any normal bounds sets (if any). A warn-
{ad

ing is given if it is the first set encountered after the BOUNDS

card. The following example illustrates the bound types allowed:

Field 1 Field 2 Field 3 Field 4
FX INITIAL XN1 10.0
10 INITIAL XN2
UP INLTTAL XN3
i In this example:

(a) The nonlinear variable XN1 will be initialized at value 10.0.
(Its initial state will be superbasic.) If 10.0 lies outside
the bounds on XN1, the initial value will be the nearest
bound.
(b) Nonlinear variables XN2 and XN3 will be initialized at their
' 0 lower and upper bound values respectively. (Their initial
state will be nonbasic.)

(¢) Any nonlinear variables that are not specified directly will

———

—

i
- initially be nonbasic at their smallest bound (in absolute
fa value).
ﬂ Note: The INITIAL bounds set provides an important facility if used

in conjunction with CRASH OPTIUN 2 (which prevents nonlinear variables

from being selected for the initial basis). By construction, all




nonlinear variables will then be either superbasic or nonbasic, and
they will be held fixed at their initial values while the remaining
(linear) variables are optimized by a normal Phase 1/Phase 2 simplex
procedure. Once it has been determined that the associated linear
program is either optimal or infeasible, the nonlinear variables
will be allowed to vary and optimization will continue in normal
reduced-gradient mode.

It follows that an INITIAL bounds set and CRASH OPTION 2
should be used if good starting values are known for all of the non-
linear variables. (At least one FX indicator must be used to achieve
the above eftect, and the SUPERBASICS card should specify a suitably
large number. If FX is used for all nonlinear variables, then CRASH
OPTION 2 may be omitted.)

If a starting point is specified by any other means (i.e., via
OID BASIS, INSERT BASIS or LOAD RASIS cards), the INITIAL bounds

set will be ignored. This allows the user to re-start a run without

altering the MPS file.

Warnings, provisos, ete.
1. The constraint matrix is not scaled by the program, so the user
should try to ensure that

a) all elements a are reasonably close to 1.0;

iJ
b) units are chosen so that all x, satisfy 107° < Ile < 10

2

These are by no means absolute requirements but are recommended
for numerical reliability (and to ensure that there are at least

some significant f'igures in the printed solution).

30
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The program does make allowance for the scale of the objective

function and, to a lesser extent, the RHS. The sizes of the

ob,jective and hi elements are therefore somewhat less critical.
3. The nonlinear objective function ls evalusted only at feasible

points. The BOUNDS section should in general include bounds on

all nonlinear variables so that "feasible points" are indeed

away from singularities in the objective and its gradient,

e.g8.; if F({) = 1/x1x; and it is known that Ky ~ 10 at the

solution, it would be advisable to include bounds forcing Xy >1

(say).

III.3. Subroutine CAICFG

Computation of the Objective Function and its Gradient

Iet f(x) be the nonlinear part of the objective function,
with corresponding gradient vector g(x). Both f(x) and g(x)
must be computed by a subroutine crlled CALCFG, whose specification
and parameters are as follows. (Recall that any linear terms in the
objective function may be included as part of £(x) or as a free

row in the constreint matrix A.)

Specification
SUBROUTINE CALCFG (MODE, N, X, F, G, NSTATE, NPROB)
IMPLICIT  INTEGER(I-N), REAL(A-H, 0-Z2)

DIMENSION X(N), G(N).

C On machines with short word length, e.g., IBM, Univac, it is
C necessary to use double precision floating-point. Hence
c IMPLICIT  INTEGER(I-N), RFAI*8(A-H, 0-Z)
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Parameters

MODF;

N

(Input, output) A control parameter defining the type
oo : . E<vork Ric 2 g ) : a
of function and derivative information required.

On entry:

MODE = 2 means the user must assign the function value
f(x) to F and the gradient values g(x) to G(j),

J l, 2, ..., N, using the values of X stored in X(j),
J l, 2, ..., N. (Other values of MODE not yet imple-
nented.

On exit:

If the user wishes to terminate solution of the current
problem, MODE should be given a negative value (viz. -1).
(Input) The number of variables involved in f(x).

Note: These must be the first N variables in the

constraint matrix A. In general, A will be of dimension
m-by 1 with N-< n.

(Input) An array of dimension N containing the current
values of the nonlinear variables x.

Note: The contents of X should not be altered, except

perhaps if NSTATE = 2 (see below).

(Output) The computed value of f(x).

(Output)  The computed gradient vector g(x). The user
must store the partial derivative Bf/dxj In  GLI)s

Fak 2 ey B

i
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(Tnput) A control parameter informing the user of the

current, state of the optimizetion process.

NSTATE = O 1if there is nothing special about the current

entry.

NSTATE 1 if this is the first entry to CALCFG. The

user may wish to read data or set up certain

local arrays for use in computing F and G
during the present and subsequent entries to
CALCFG.

NSTATE = 2 if the current solution in X is optimal.

The user may wish to perform additional compu-

tations on X.

Notes about entry with NOSTATE 2

I

1.

This will occur only if the user includes a card of

the form

CALL OBJECTIVE WHEN OPTIMAL
in the problem specifications.
This will be the last entry to CAILCFG.
The entry will not occur if' iterations are terminated
before optimality is recognized.
The entry will be made before the solution is output
to the printer and/or the Solution File. Any changes
“to the nonlinear variables X will therefore appear

in the solution output. (For example, one might wish

to round the elements of X to the nearest integer.)

e
N




NPROB (Input) - An integer which can be set by the user via a

card of the form
PROBLEM NUMBER 5

in the problem specifications. This parameter may be
used to branch to one of several function calculations
within CALCFG. The user may ignore it or use and change

it as desired.

III.k., BASIS Files

Four distinet methods are available for loading and saving
basis descriptions';f They are invoked by SPECS cards of the following
form. (Just one option per card. The file numbers may be whatever

the user chooses.)

Loading avi
OLD BASIS FILE 10 NEW BASIS FILE 11
INSERT FILE 20 PUNCH FILE 21
LOAD FILE 30 DUMP FILE 30

CRASH OPTION O, 1 or 2 SOLUTION FILE 50

The keywords OID, INSERT, LOAD are mutually exclusive. If more
than one positive file number is specified, the order of precedence
is that just given. If no starting files are specified, one of the
CRASH options takes precedence.

The keywords NEW, PUNCH, DUMP, SOLUTION may all specify
positive file numbers. Hence from zero to four files may be created

at the end of a run, in the order just given. In addition, a NEW

L]

f
See also the INITIAL bounds set in Section 1I1.2.
3L
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BASIS FILE may be created every k iterations during a run, where

k is specified by a CSAVE FREQUENCY card.

Normally the various basis files are used in the ffollowiryr

circumstances. Fuller details are given in Section V,

1. OID/NEW bit map. This is the most compact and efficient method

for starting from an earlier run on either t

) ame problem or

@

orie of the same dimengions.

2. INSERT/PUNCH. This provides compatibility with certain commercial
systems (e.¢., MPS/360, MPSX/370, MPS IT1I, APEX). The PUNCH
file from a particular problem can be used as an INSERT file
for restarting solution of the same problem. Occasionally it

may be possible to modify the INSERT file and/or the problem

and still obtain a useful advanced basis.

The standard MPS format has been slightly generalized within

MINOS to allow saving and reloading of nonbasic solutions.

3. IOAD/DUMP. This is similar in vein to INSERT/PUNCH but allows
more direct specification of a list of basic and superbasic
variables (both structurals and logicals) and their desired start-
ing values. It is usually easier to ensure that a DIMP file
(rather than @ PUNCH file) is suitable for restarting a modi-

(ied problem.

ta .
So-called because eech variable is represented by just one character.




SOLUTION file.

This may be used to communicate solution values

(e.g., x, ®, objective gradient, bounds) to another program for
further computation. It uses essentially the same format as
that used for the printed solution. For greater precision it

uses format 1PE16.6 for all values, rather than F16.5.
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IV. Problem Specifications

IV.1. The S8SPECS file -- Syntax

Easch card in the SPECS file must be of the form

(keyword)  (identifier) (idlist) (number) (comment)

where items may be written in free format with one or more blanks or
'=' 5 as separators. In general (depending on (keyword)) not all

items need be present.

(keyword ) A string of non-blank characters beginning anywhere
in columns 1 through T70. A keyword is defined by its
first 3 characters; any others are ignored.
{identifier) A list of 8 consecutive characters, the first of
which is any non-blank character except the following,
which are hereby defined to be numeric characters:
GLE23856T89 +.-
Valid use of identifiers:

OBJECTIVE = COST ROW

RHS = e ol
RANCES = RNGOO1
BOUNDS = LOW1.E=5

Invalid use of identifiers:

OBJECTIVE = -2
BOUNDS = 2Q
BOUNDS = 1,0E=T
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(id1list)

{number)

Note that blanks may be imbedded in the last 7
characters, but the same blanks must then appear

in the corresponding MPS data cards.

A list of items separated by blanks or '=' s. The
first character of each item is not one of the numeric
characters listed above. All items in the list are
ignored.

Valid use of idlist:

WEIGHT ON OBJ (DURING PHASE ONE) = 100.0

Invalid use of an idlist:

WEIGHT ON OBJ (DURING PHASE 1) = 100.0

% 1ist of up to 8 consecutive characters, the first
of which is numeric. The number may be either an
integer or a real constaent. It will be treated as an
integer if all remaining characters are numeric; it

should then be typed in I format.

Valid use of integers:

ROWS = 2000
COLS = +2000
Invalid use of integers:
ROWS = 1.0E+3

A number will be treated as a real if any character
other than the first is '.', 'E' or 'D'; it should

then be typed in F, E or D format,.
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(comment)

IV.2. Jhe

ATJ TOLERANCE = 0.00001

WEIGHT ON OBJ = +1.0E+5

LOWER BOUND = ~1.0D+3%0

Invalid use of reals:

LOWER BOUND = .1E-5

Scanning of a specification card is terminated under

the following conditions:

1. if the first non-blank character is an '*' (i.e.,
if the first character in the keyword is an '*'),

2. if any blank or '=' is followed by an '*',

3. If an integer or a real has been recognized.

Hence a comment may be any characters following an

'¥! or an integer or a real.

Valid use of comments

"

OBJ = COST 02 * 2ND ALTERNATIVE

ROWS 1000 (OR LESS

WEIGHT ON OBJ = 10.0 IN PHASE 1

SPECS  file -- Keywords

The following is an alphabetical list of recognized keywords.

A typical, use of each keyword is given, along with a definition of

the quantities involved and various comments or warnings. In many

cases, the value associated with a keyword is denoted by a letter

such as

k, and allowable values for k are subsequently defined.




e AIJ TOLERANCE 0.001

During input of the MPS file, matrix coefficients aij will be

ignored if ’aijl is less than or equal to the specified tolerance.

e ALIGNMENT TOLERANCE 1.0

A parameter invoking a certain algorithmic option which affects

the search direction used for superbasic variables. Specifically,

a subset of the superbasics is selected such that each member xj

is close to its one of its bounds and has a significant gradient

component moving xJ towards that bound. The search direction is

scaled in a way that will cause all members of the subset to reach

their bounds simulteneously. All members will therefore be "squeezed"

out of the superbasic set, unless a basic variable happens to reach

a bound first.

1. The ALIGNMENT keyword should not appear if alignment is not
required.

2. Alignment is unlikely to be successful on nonlinear problems.

N

. Use of the specified tolerance depends on the particular version

of subroutine ALIGN.
e BOUNDS BOUNDO1
The 8-character name of the bound set to be selected from the MPS file.
1. BNDS is a valid alternative keyword.
2. If no BOUNDS keyword exists, or if the name specified is blank,

the firgt bound set in the MPS file will be selected.

3. 1If the MPS file contains one or more bound sets, but the user
wishes no bound set to be used, some dummy name should be specified,
e.g., BOUNDS = NONE.
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e CALL OBJECTIVE WHEN OPTIMAI
This requests a final call to the user's subroutine CAILCFG when
(and if) an optimal solution hag been obtained.

¥ s g
in Section III.5.

1. Refer to the parameter "NSTATE'
The CALL keyword should not appear if a final call is not
required.

o CHECK FREQUENCY K

The residual vector r =b - s - Ax will be compu.ed every k-th

iteration. Refactorization of the current basis B 1is requested

if Hfl_lx'f is too large, where D = liag{(di) and d_i is the largest
element in the i-th row of B. Normally k should be about 25 or
half the FACTORIZATION FREQUENCY.

o COEFFICIENTS 4000

See ELEMENTS.

® COLUMNY 1000

An over-estimate of the number of columns in the constraint matrix
(excluding slacks). Default fs 3m where m is specified by the
ROWS card.

o CONJUGATE GRADIENT VERSION K

Thia specifies which version of the method of conjugate gradients
should be used if there is not enough storage available (via the

HESSTAN keyword) for the usual quasi-Newton method.

Conjugate gradient algorit

Fletcher and Heeves (1964)
Polak and Ribiere (1969)
Perry (1976)

Memoryless DFP

Memoryless Complementary DFP

=

FAON =

W

L1




Further discussion is riven in Section 1[.2.
e CRASH OPTION k
This determines which columns of [A I] are to be congidered for

construction of an initial basis B.

k Meaning
0 The all-glack basis B = I 1is set up.
1 All columns of A are considered (except those correspond-
ing to nonlinear variables which have been initialized
in the MPS data at values away from their bounds -- see
Seetion III.2 ). This is the default option.
=2 The columns of A corresponding to linear variables will

be considered (same as k = 1 if the problem is purely

linear).

In all cases the initial basis is chosen to be strictly triangular

without regard to feasibility or optimality.
1. The CRASH option is ignored if a starting hasis is specified.

e DERUG LEVEL k

varions positive values of X cause various amounts of additional
information to bhe printed.

® DUMP FILL k

If k > 0, the last solution ohtained will be output to file k in
the format described in Section V.3, Variahles are listed by state,

name and value, ‘
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o ELFMENTS 5000
An over-cstimate of the number of nonzero elements (coefficlents,
a,.) in the constraint matrix.

1. COEFFICIENTS 1is a valid alternative keyword.
2. The default value is 5n where n 1is specified by the COLUMNS

card.

e ERROR MESSACE LIMIT 50

The maximum number of error messages to be printed for each type of
error occurring during input. (Should be large for early runs on a
particular MPS deck. ‘Can be lowered to suppress warning of non-~fatal
errors during multiple subsequent runs.)

e FACTORIZATION FREQUENCY k

At most k iterations will occur between factorizations of the basis.,

1. INVERT 1i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>